

Media Information Updated July 31, 2018

The McLaren Senna: the ultimate road-legal track car

- The most extreme road car McLaren has ever built and the latest model in the McLaren Ultimate Series
- Bears the name of legendary Formula 1 driver, Ayrton Senna, befitting its status as the ultimate McLaren road-legal track car
- The most responsive and engaging road-legal McLaren ever, with the purest connection between driver and car
- Aggressive appearance epitomizes McLaren's 'form follows function' design philosophy
- Mid-engined, rear-wheel drive layout, with advanced RaceActive Chassis Control II (RCC II) suspension and Comfort, Sport, Track and Race handling modes
- Active front and rear aerodynamics; up to 1,763.7lbs of downforce
- Driver-focused cockpit, with only essential instrumentation and ultra-light, one-piece carbon fiber racing seats
- Carbon fiber Monocage III chassis and carbon body panels are integral in making the McLaren Senna the lightest road car McLaren has built since the iconic F1, at 2,641lbs lightest dry weight
- 4.0-liter twin-turbo V8, the most powerful McLaren road car internal combustion engine ever, configured to deliver instantaneous throttle response
- M840TR engine produces 789bhp and 590b ft, giving the McLaren Senna a power-toweight ratio of 659bhp-per-ton
- Savage performance: 124mph in just 6.8 seconds, with 62mph achieved in 2.8 seconds and 186mph in 18.8 seconds
- Cockpit comes alive with the sound of air rushing into the roof-mounted 'snorkel' intake
- Unique Inconel and titanium exhaust exits through ultra-low carbon fiber rear deck, enhancing aerodynamic performance
- Motorsport-derived braking system provide unprecedented stopping power: braking from 124mph to standstill in just 328 feet (100 meters)
- Priced at \$958,966 (US)*
- Production limited to 500 units, all hand-assembled at the McLaren Production Centre in Woking, Surrey, England, from Q3 2018 - and all allocated to customers

"You commit yourself to such a level where there is no compromise. You give everything you have; everything, absolutely everything."

Ayrton Senna

The McLaren Senna has been designed, engineered and developed with single-minded purpose: to be the ultimate McLaren track-concentrated car for the road. Legalized for road use, but not sanitized to suit it, the new Ultimate Series deliberately compromises McLaren's trademark breadth of supercar daily usability to deliver the most intense circuit experience of any road McLaren.

"The McLaren Senna is a car like no other: the personification of McLaren's motorsport DNA, legalized for road use but designed and developed from the outset to excel on a circuit. Every element of this new Ultimate Series McLaren has an uncompromised performance focus, honed to ensure the purest possible connection between driver and machine and deliver the ultimate track driving experience in the way that only a McLaren can."

Mike Flewitt, Chief Executive Officer, McLaren Automotive

True to the legendary abilities of one of McLaren's greatest racers, every element of the McLaren Senna has an uncompromising performance ethos and a raw focus that delivers the purest connection between driver and car; this is the most responsive and engaging road-going McLaren ever. To this end, the appearance of the car is deliberately aggressive; organic shapes have given way to a design language that is purposely fragmented in its pursuit of absolute performance, with downforce and aerodynamic balance the guiding principles. The McLaren Senna is the strongest expression yet of McLaren's 'form follows function' philosophy.

Always at the forefront of vehicle aerodynamics, McLaren redefined supercar performance in the 1990s with the McLaren F1, the world's first ground-effect road car. The bar was raised once again with the first Ultimate Series, the McLaren P1™. Now with the McLaren Senna, ground-breaking active front and rear aerodynamics and RaceActive Chassis Control II (RCC II) combine to raise downforce to unprecedented levels while ensuring that the extreme performance can be fully exploited through precise control of the aero balance.

The carbon structure at the core of the McLaren Senna, Monocage III, is the perfect complement to the aerodynamics and powertrain. This strongest monocoque that McLaren has ever built for a road legal vehicle, Monocage III combines with an all-carbon body and uncompromising lightweight engineering throughout to make the McLaren Senna the lightest McLaren since the iconic F1. The lightest dry weight of 2,641lbs and the 789bhp power output give the McLaren Senna a power-to-

weight ratio of 659bhp-per-ton. This statistic immediately underlines the performance credentials of the newcomer to the McLaren Ultimate Series, a product family introduced with the McLaren $P1^{TM}$ and reserved for the rarest and most extreme McLaren cars.

There are strong echoes in the new McLaren Senna of the incredibly focused philosophy behind the McLaren $P1^{TM}$; yet where the latter was designed to be the best driver's car on road and track, the ambition for the McLaren Senna is for it to be the best road-legal track car, setting a new benchmark for circuit excellence with track prowess taking precedence.

An innovative new hydraulic suspension system, RaceActive Chassis Control II, works in harmony with the active aerodynamics and sacrifices daily usability for circuit pre-eminence. Selecting Race mode brings the uncompromising nature of the McLaren Senna to the fore, the hydraulic suspension increasing roll stiffness and reducing ride height to lower the center of gravity and further improve aerodynamic performance.

The driver is 'hardwired' into the experience at all times. The ultimate connection to the McLaren Senna is made through the steering wheel, the seat and the pedals, because to truly enjoy the sensation of driving at ferocious speed you need a machine that actively communicates its every intent, putting you in complete control.

This is a McLaren that embodies Ayrton Senna's values. The passion in everything he did is reflected in the efforts of every McLaren designer and engineer in creating the vehicle that carries his name. The commitment to go back to the drawing board once component weight targets were met and pursue a further five per cent reduction mirrors Ayrton Senna's single-minded focus and the abandonment of trademark McLaren usability in the quest to build the ultimate track car, his refusal to compromise. Most importantly, the innate feel and intuitive connection to his race cars for which Ayrton Senna was renowned will be experienced by those who drive the McLaren Senna.

Just 500 examples of the McLaren Senna will be produced and all are already assigned. Each vehicle will be hand-assembled by specialists at the McLaren Production Centre in Woking, Surrey, England, in a process taking close to 300 hours.

The McLaren Senna in detail

The purest connection between driver and car

"The McLaren Senna honors my uncle because it is so utterly focused upon the driver, and their absolute connection with the vehicle. This engagement, these sensory cues that the driver responds to and relies upon, the whole immersive experience, has been at the heart of the development from the very start."

Bruno Senna, racing driver, nephew of Ayrton Senna and McLaren ambassador

- Absolute driver engagement and incredible circuit performance, driven by active aerodynamics producing up to 1,763.7lbs of downforce at 155mph
- The fastest McLaren road car around a racetrack, with an intensely involving driving experience
- Inspired by one of McLaren's greatest drivers, every element of the McLaren Senna has an uncompromising performance ethos and raw focus that delivers the purest connection between driver and car

789bhp. 1,763.7lbs of downforce. A lightest dry weight under 2,641lbs. The level of performance on offer from the McLaren Senna is self-evident from these values, but the figures only tell part of the story. From the genesis of the McLaren Senna's development, there was an overwhelming drive to reflect the innate feel that Ayrton Senna experienced with his race cars. Without this, the blistering performance of the car cannot be exploited; unparalleled feedback is key, an incredible connection with the road or track paramount.

Many of the attributes required to create such a vehicle have long been part of McLaren's own DNA: a light, strong and stiff carbon fiber monocoque; mid-engine layout for ultimate poise and balance; electro-hydraulic steering for the purest link to the front tires. But to create the McLaren Senna demanded more, a mind-set that sees comfort levels willingly compromised in the pursuit of the most intensive and intuitive driving experience possible.

There is no mistaking a drive in the McLaren Senna- it is raw. But this is not a vehicle balanced on a knife edge; the intuitive connection comes from trust, from the fact that car and driver are as one, exploring the phenomenal abilities of the most responsive and engaging road-legal McLaren ever.

"Real performance is not objective, theoretical or based on a simulated lap time; it is what a driver can achieve, "explains Andy Palmer, Vehicle Line Director - Ultimate Series, McLaren Automotive. "The McLaren Senna delivers real performance - accessible and attainable because of an intuitive connection, while at the same time rewarding, exciting and challenging to the very best drivers in the world."

Aerodynamic control is fundamental. High levels of downforce enable truly astonishing dynamic performance and circuit lap times, but harnessing the airflow to optimize vehicle balance is key to a driver accessing – and exploiting – the full abilities of the McLaren Senna on a track. There is no sudden step into the dynamic unknown, rather a predictable build-up of extra grip to accompany the increase in speed. This boosts driver confidence, encouraging later, harder braking and quicker return to the throttle to exit a corner.

Select Race mode and the McLaren Senna can access levels of downforce never seen before on a McLaren road car. The reduction in ride height in 'Race' lowers the center of gravity, working with the aerodynamic features and with a corresponding increase in vertical stiffness and roll stiffness. The hydraulic suspension allows relative compliance at lower speeds where a race car would almost certainly be skittish. At higher speeds and in Race mode, the suspension significantly stiffens, working in conjunction with optimized aerodynamics to maximize mechanical tire grip and feedback and in turn, circuit performance. It is truly a 'no compromise' solution, designed to give the driver complete control.

Pioneering work in active aerodynamics has been crucial in delivering the driver connection and outright ability that the McLaren Senna enjoys. The active front aero blades and active rear wing make a tremendous contribution to the overall downforce levels, but are also vital in negating any adverse effects; the former 'bleed off' excessive downforce to maintain optimal aerodynamic performance, while the rear wing moves under heavy braking to increase stability and making it easier to place the McLaren Senna at corner entry. Sophisticated control systems ensure this process remains invisible and unobtrusive, the driver experiencing only a consistency in vehicle balance that instils confidence.

Traditionally, McLaren road cars have been refined to create the perfect ride and handling balance, but for the McLaren Senna the independent damping, roll and warp control has been focused to optimize performance on a race track. Vehicle pitch is limited under braking and when turning and clipping a curb roll is minimized with the inside front wheel able to travel freely, so as not to disturb the body or impede the chosen line. The hydraulic system also drives fluid to the outside rear wheel, creating a stabilizing effect and improving traction, while squat under full power is also negated. A

multitude of other adjustments continuously take place, the complexity of the system belied by the seamless, simple outputs that enhance feel, feedback and response.

The McLaren Senna is a vehicle that connects with the driver at all speeds and in all situations.

Building on the 'sub limit' feel achieved with the McLaren P1™ was critical in developing the car. The electro-hydraulic steering is McLaren's quickest yet, delivering heightened feel and engagement.

The damping levels and steering weight make the McLaren Senna feel alive well below its upper limits – when the springs are not fully loaded or the tires absolutely compressed – and this rich texture of communication blends and binds with the feedback transmitted to the driver as aero levels and cornering speeds build.

The sharpness of the steering is matched to the rear end stability, while the engine's response on throttle mirrors the instant engine braking when the driver lifts off the accelerator pedal. The brake pedal response is the best McLaren has ever developed, the driver able to modulate the pressure and adjust the attitude to a fine degree. The tire tuning carried out by McLaren and Pirelli has delivered predictable and progressive breakaway behavior. Development and testing was dedicated to making objective target numbers feel absolutely intuitive, to ensuring a driver feels comfortable at the wheel and giving them the confidence to drive the McLaren Senna as it is designed to be driven.

Designed for unprecedented aerodynamic performance

"The design language of the McLaren Senna is extremely aggressive and different from any previous McLaren – because no other road-legal McLaren has had to fulfil such an uncompromising brief. When you see the McLaren Senna for the first time, you know instantly how single-minded and focused it is; to meet the performance targets we have had to go to an entirely different level from even the McLaren P1™."

Rob Melville, Design Director, McLaren Automotive

- Aero-led design prioritizes absolute aerodynamic performance ahead of visual appearance
- Active front aero blades and 'swan neck' rear wing work continuously to shorten braking distances, maximize downforce, improve traction, reduce drag and fine-tune aerodynamic balance
- Aerodynamic downforce maintained during yaw, raising cornering speeds to extraordinary levels

The McLaren Senna is the ultimate distillation of the company's 'form follows function' design philosophy. Absolute driver engagement and uncompromised track performance have taken precedence: total downforce, the ability to reduce drag when not needed and the ability to shift the aerodynamic balance front or rear are the guiding principles. These elements create the optimal dynamic attributes that inspire confidence in a driver to push for ever-faster circuit lap times.

Organic shapes have given way to an aggressive design language that is ruthless in bending and guiding airflow. When viewed from above, the McLaren Senna is nature's most efficient shape - a teardrop - but with each corner pushed out into the airflow to ensure optimal aerodynamic performance, the body components almost 'clipped on'.

McLaren's designers went to extremes, visually and functionally cutting open the shrink-wrapped body to reduce weight. Proportionally, this is recognizably a McLaren but you cannot follow a single line from the front to the rear without it passing through a functional intake or vent. To McLaren's design team, the appearance of the McLaren Senna honors the engineering of the vehicle in the most honest way.

Airflow hitting the nose of the McLaren Senna meets four surfaces, and is turned by each element in sequence: the front splitter; the active aero blades: secondary fixed aero blades and the slot-gaps located between the headlights and daytime running lights.

The leading edge of the McLaren Senna is a front splitter that is 5.9 inches longer than the front splitter on the McLaren $P1^{TM}$ and 3 inches longer than front splitter on the McLaren $P1^{TM}$ GTR. It juts out into the free-stream airflow, optimizing downforce not only in a straight line, but also during cornering. The carbon fiber splitter is engineered to be as thin as possible, minimizing its intrusion into the airflow, while still meeting all legislative requirements. The front section can also be easily removed and replaced, meaning any damage caused by large curbs at race circuits can be rectified without having to change the entire splitter.

Selecting Race mode lowers the nose of the McLaren Senna by 1.5 inches reducing airflow under the vehicle and enhancing the aerodynamic effect of the front splitter. This is further enhanced by the innovative front downforce duct, an intake set within the flat underfloor that reduces airflow under the body and has the effect of 'virtually' lowering the front splitter closer to the ground. Venting at the base of the windscreen, the inverted Y-shape - with one wide intake in the underfloor splitting around the HVAC unit and channeling through to twin vents - generates significant downforce.

The second elements directing airflow are the innovative front aero blades. Symmetrically active, and working in unison with the active rear wing, they maintain optimal aerodynamic balance. During cornering and acceleration, downforce is increased, but such is the huge aerodynamic contribution of the front splitter that under braking the twin active elements serve to reduce downforce, optimizing vehicle balance. The two active aero blades rotate to either direct air onto fixed aero blades set higher and behind them, or adjust to a shallower angle to 'bleed off' downforce.

To optimize the active front aerodynamics, the side-mounted low-temperature radiator (LTR) configuration familiar from the McLaren Super Series and Sports Series has been replaced with a single, centrally mounted LTR. Cooling air is driven into a central intake, which vents via two ducts in the bonnet. Two central front bumper ducts set below the McLaren badge – appearing almost as nostrils – also guide air through the front clamshell to help generate downforce.

Lighter, more efficient LED headlights

The final aerodynamic element at the front of the car is an intricate air path located between the headlights and daytime running lights, made possible by splitting the headlamp cluster into two units. This separation also allows the headlight unit to be positioned closer to vertical, improving optical performance – the main-beam range of the McLaren Senna is 1640.4 feet. Meticulous work has led to a 33 percent reduction in headlight weight, the components each being more than 2.2 feet lighter than the units fitted to the first Ultimate Series, the McLaren P1TM.

The headlights each feature 21 LEDs, with four LEDs providing the main beam, five for the dipped beam and the remaining 12 utilized for the pioneering Static Adaptive functionality. Fully digital, the Static Adaptive Headlights remove the need for mechanical motors by varying LED intensity according to steering angle, lighting corner apexes when turning. Given the incredible performance of the McLaren Senna, this is functional from standstill all the way through to maximum speed.

Air that has passed through the narrow channel between the headlights and daytime running lights joins one of the most aerodynamically complex sections of the McLaren Senna. Together with airflow from the front fender aero ducts – which sit outboard from the active aero blade intakes – airflow is directed around the front wheels. This serves to calm the wake generated as the wheels turn during cornering, cleaning up the airflow that moves towards the rear of the vehicle. Large openings in the wheel arches serve to reduce turbulent pressure.

Airflow that has exited into the front wheel arches, from both the active aero blades and the central front bumper ducts, is guided by a turning vane into sill-mounted intakes that feed the rear brake

ducts and double diffuser. Attached to the doors with beautifully complex strakes, the turning vanes are significantly larger than those of the McLaren $P1^{TM}$ and key in managing airflow.

Great cooling efficiency and optimized downforce

Cooling for the engine and twin turbochargers is achieved via the largest intakes yet seen on a road legal McLaren. To reduce weight, McLaren's engineering team tuned the airflow over the top of the front clamshell and between the A-pillars and the wing mirrors to increase the speed at which 'clean' air is driven rearwards into the side intakes. This high-pressure, more efficient flow into the high temperature radiators (HTR) improves cooling. High above the driver is a 'snorkel' air intake, inspired by both the McLaren F1 and McLaren P1TM, that feeds McLaren's most powerful internal combustion engine ever in a road car.

The rear clamshell of the McLaren Senna was born entirely from aerodynamic and cooling requirements. Prominent 'gurney flaps' ahead of a succession of stepped louvres direct air away from the rear deck and down the sides of the body. The resulting area of low pressure draws hot air out from the high-temperature radiators and engine bay, with the louvres ensuring that the airflow does not impact the efficiency of the rear wing.

The unique slash-cut exhausts make a similar airflow contribution, their positioning and angle also negating any disturbance to the rear wing or rear diffuser. The deck-exit exhaust pipes are not the simplest engineering solution, but they are the most efficient and most effective. They exit through the lowest rear deck (measured at the trailing edge) of any McLaren road car, a full 7.1 inches lower than the McLaren Super Series.

In contrast to the ultra-low rear deck, the double-element carbon fiber rear wing appears particularly imposing. The wing, which is hydraulically operated constantly adjusts to optimize the levels of downforce and maintain an ideal aerodynamic balance. It sweeps through 35 degrees from its maximum DRS setting to a high-downforce position in between 0.3 and 0.7 seconds, depending on how fast the car is moving and the range of movement required.

In combination with the active front aero blades, the rear wing works to maximize straight-line performance, braking and dynamic handling performance. During early testing, mule vehicles were built with GT3 racing-specification rear wings and fitted with additional gurney flaps to increase downforce, but were unable to fully replicate the power of the final McLaren Senna wing design.

The top-mounted, 'swan-neck' pylons of the wing further boost downforce. By keeping the underside of the wing clean, different angles of flow can be better accommodated, improving yaw performance. The pylons are aerodynamically tapered for the same effect, with end plates also helping to guide airflow rearwards. Further efficiencies were achieved by exposing the hydraulic mechanism, reducing the height and intrusion into the airflow and also saving weight. The functionality of the wing ensures the mechanism is only exposed at high speed, when airflow safeguards against contamination by pollutants.

Beauty in the details

The LED rear lights have received the same exhaustive attention to detail as the headlights, the single-blade design engineered to be as slim as possible to reduce interruptions to airflow from within the rear of the vehicle. With each unit having 84 LEDs in total in a horizontal strip − 60 red for the rear light and 24 amber for the indicator function − geometry is simple and airflow predictable. Significant percentage weight reduction has again been achieved, with each rear light unit weighing only 2.2 inches, half the weight of the equivalent McLaren P1[™] component.

Look behind and beyond the LED taillights of the McLaren Senna and the engine, driveshaft and gearbox are immediately visible. McLaren's engineers are rightly proud of the exquisite detail, but it was a conversation with an enthusiastic McLaren $P1^{TM}$ owner that drove the team to ensure these mechanical components were exposed.

"I met a McLaren P1 $^{\text{TM}}$ customer at our retailer in Hong Kong. His car was parked right outside and we were admiring it at dusk – it looked fantastic," reveals Mark Gayton, McLaren Senna Project Manager. "He loved that its appearance gave him the same emotional connection as driving it on track and further helped him appreciate the depth of engineering within. The McLaren Senna evokes the same feelings because we have put everything we know into this vehicle; building on the McLaren P1 $^{\text{TM}}$, there is a progressive mesh surrounding the taillights, which reveals more of the engine bay as you move towards the center of the vehicle. And because this is a McLaren it has also a function, increasing vehicle cooling that is further enhanced by repositioning the exhaust into the rear deck."

The double diffuser is unmistakable. Crafted from a single piece of carbon fiber, it starts under the rear axle and as it increases it height serves to accelerate air out from under the vehicle. This creates a low-pressure zone and 'sucks' the McLaren Senna to the ground. In Race mode, the rear of the McLaren Senna lowers 9mm less than the front, further optimizing the performance of the diffuser by increasing vehicle rake.

In isolation, the detailed work that has gone into every aerodynamic element of the McLaren Senna is mesmerizing. To experience the effect of them all working in unison is truly incredible.

Built around the driver, for the drive

"The sensory experience of driving is paramount. Through what the driver feels, hears and sees, we want every moment behind the wheel to deliver the emotional intensity of a convertible and the pure connection of a race car. because absolute driver engagement is at the heart of the McLaren Senna."

Andy Palmer, Vehicle Line Director - Ultimate Series, McLaren Automotive

- Monocage III body structure with slim roof pillars that afford an excellent view through the deep, wide windscreen and across the front fenders, to perfectly place the car in corners
- McLaren's trademark dihedral doors feature optional glazed lower apertures, significantly enhancing the sensory experience for both driver and passenger
- Ultra-light carbon fiber seats engineered with an innovative double-shell design weigh
 just

17.6lbs each fitted

The ultimate connection with the McLaren Senna is experienced from the driver's seat, but the intimate relationship with the interior begins with the McLaren F1-inspired doors. An intricate turning vane below the wing mirror, together with a dramatic horizontal strake splitting airflow into the rear intakes, highlights the potent aerodynamic forces at play. The half-drop side window sections are a purposeful homage to the iconic F1, but also allow the door skin to be brought inboard to benefit aerodynamics as well as aiding weight reduction through the use of smaller electric window motors.

The dihedral doors hinge forwards and upwards, opening with a portion of the roof and exposing noticeably low sills. These features ensure a wide aperture for drivers or passengers entering or leaving the cockpit, even when clothed in a helmet and a race suit. Crafted in carbon fiber and pared back to their most minimalist form, the doors close with minimal effort.

From within the cockpit of the McLaren Senna, the engineering focus on track prowess is clear to see. Carbon fiber and Alcantara® are the lightweight materials of choice used extensively throughout the interior of the McLaren Senna and reflect the stripped back, functional nature of the cockpit. The dashboard, doors and exposed elements of the Monocage III are all in exposed carbon

fiber, an honesty that reflects the engineering intent of the car. Alcantara® (or leather if preferred) covers the side airbags and the lack of further interior trim saves weight and reveals the beautiful carbon fiber construction of the dihedral doors. Even the door gas struts, which can be colormatched to the brake calipers and front active aero blades, are exposed to save vital grams.

The inherent strength of the Monocage III allows for remarkably slim roof pillars that ensure excellent views through the deep, wide windscreen and across the front fenders. This makes it easier to perfectly place the McLaren Senna through corners, as well as improving visibility in general. Inspired by the 360-degree view experienced by helicopter pilots, the unique glazed doors also enhance visibility, as well as providing an unmatched sense of drama. Opting for glazed upper door sections, where lightweight, toughened Gorilla Glass replaces the standard gloss black carbon fiber panels, allows even more light to flood into the cockpit.

The Super-Lightweight seats are crafted in carbon fiber, using an innovative double-skin shell technology that reduces weight by 33 percent in comparison with the same seat shell manufactured using conventional carbon fiber processes. Each seat shell weighs a mere 7.2lbs. Seven lightweight Alcantara® (or optionally, leather) pads replace a fully padded foam mold to reduce weight. The driver's seat moves on rails, and the foot pedals are fixed – the optimum solution to reduce component complexity and weight. The module to select Drive, Neutral and Reverse is fixed to the driver's seat and moves with it, ensuring the controls are always close at hand.

The door release mechanisms and window switches have been moved to the center of the vehicle and are housed alongside the engine start-button in a roof-mounted panel. The three-spoke steering wheel, trimmed in Alcantara® or leather, is free of buttons and switches to allow a pure focus on the sensory feedback it delivers. The grip offered with and without gloves has been optimized for track driving, as has the design of the wheel itself. Tactile, extended gear shift paddles in satin-finish visual carbon fiber, linked with a rocker switch, are fixed behind the steering wheel.

Choice of how information is displayed

The driver receives information from the McLaren Folding Driver Display and the central infotainment screen, two high-definition screens that together compromise the McLaren Driver Interface. In Full Display Mode, the folding driver display presents information on an upright TFT screen, with three different layouts depending on whether the McLaren Senna is being driven in Comfort, Sport, or Track or Race modes. Linked to the Active Dynamics Panel settings or independently controlled if preferred, the display screen slides down into Slim Display Mode to show only crucial information – speed, engine rpm and selected gear. This position is designed for circuit

driving, where it further improves forward visibility of the track, but will also appeal to those who prefer a simpler display while driving on road.

The 'floating' central infotainment screen is presented in portrait to increase interior space. It is also angled out and up towards the driver, to be easily visible within line of sight even when a helmet is being worn. The edge-to-edge glass screen integrates the Active Dynamics Panel and an 8-inch display that presents vehicle functions to the driver; audio (when specified), media, navigation and other features are all controlled using this TFT screen, which features rich, crisp graphics and further helps to unclutter the interior by removing the need for an abundance of switches and buttons.

McLaren Track Telemetry (MTT) is an optional technology on the McLaren Senna and is also accessible through the central infotainment screen. Capturing real-time data, including speed, lap times, throttle angle and lateral/longitudinal G-forces, MTT can be used to configure a track session and analyze each lap, including individual sector times. Core telemetry and timing data is highlighted on the Full Driver Display, with more comprehensive information including full lap history available on the central infotainment screen.

An additional, three-camera system is available to complement MTT. A front-facing camera is located on the windscreen to provide the optimal view of vehicle positioning. A second camera is mounted between the driver and passenger and captures each lap from inside the cockpit, while a third camera located within the rear bumper records corner exit. All telemetry and video data can be downloaded for detailed analysis, allowing McLaren Senna owners to continuously refine and hone their driving performance.

Options complement track-focused design

Highlighting the focused intent of the McLaren Senna, a lightweight lithium-ion battery is standard, along with a lithium-ion vehicle battery charger. The deletion of a climate control system as standard to reduce weight (it can be fitted if required at no additional cost, at point of vehicle build) is a further indication of the dedication to track performance, as is the option of fixing the position of the passenger seat by removing fore and aft adjustment to save weight. McLaren Special Operations (MSO) offers six-point racing harnesses for both the driver and passenger, as well as an MSO Defined, powered 'push-to-drink' system with lightweight carbon fiber dispensing unit to ensure optimal hydration during extended circuit running.

A range of luxury and convenience features are available upon request, including high-grade leathers and a wider 'Touring' specification of the Super-Lightweight carbon fiber seat. Parking sensors and a rear-view camera are no-cost options. Additionally, McLaren has collaborated with

Bowers & Wilkins to create an outstanding audio system specifically designed for the McLaren Senna. The 7-speaker system uses key Bowers & Wilkins acoustic technologies such as doubledome aluminum tweeters and Kevlar midranges, to deliver incredible sound. The optional, ultralightweight audio system weighs just 16.1lbs and is proof that sound performance is dependent on the quality, construction and integration into the structure of the car, rather than purely the number of speakers.

McLaren's commitment to weight reduction is further evidenced by an exterior color unique to the McLaren Senna, Caliber Black – a lightweight paint specially formulated to reduce the volume of liquid needed.

Lightweight carbon fiber core

- Incredibly strong and stiff carbon fiber Monocage III incorporates innovative double-walled rear crash structure, negating the need for an additional roll cage and minimizing weight
- Single-minded focus on uncompromising lightweight engineering including carbon fiber body panels – restricts lightest dry weight to 2,641lbs, making the McLaren Senna the lightest McLaren since the iconic F1
- Bespoke carbon fiber roof-mounted air intake and unique carbon fiber engine plenum are key elements in the ferocious 789bhp powertrain

The Monocage III at the core of the McLaren Senna is the strongest carbon fiber monocoque McLaren has ever created for a road car. This state-of-the art, carbon 'tub' features an upper structure that incorporates the vehicle's roof and an innovative double-walled rear assembly that doubles as an in-built protective roll cage. Manufactured from a layup consisting of more than 170 individual pieces, Monocage III is optimized to create the lightest structure possible and is one of the reasons why the McLaren Senna – with a lightest dry weight of 2,641lbs – is the lightest road vehicle McLaren has built since the McLaren F1.

McLaren pioneered carbon fiber technology in motorsport; the lightweight and stiff carbon structure at the center of the McLaren Senna can trace its lineage back to 1981 and the McLaren MP4/1, the first carbon Formula 1^{TM} racing car. Formula 1^{TM} technology inspired the iconic McLaren F1, the world's first all-carbon-fiber-bodied road car, and every McLaren road car built since has had a strong, stiff and light carbon fiber monocoque at its core.

The Monocage III builds on structural techniques developed for the first Ultimate Series, the McLaren P1™, and the second-generation McLaren Super Series, the 720S. It is the perfect platform for the McLaren Senna, with the inherent benefits of carbon fiber over steel and aluminum alone bringing significant performance advantages. The light weight creates a lack of inertia that intensifies acceleration, braking and directional changes, underpinning a vehicle that responds instantly to every input from the driver's hands and feet. Additionally, the high torsional rigidity provides an incredibly stable platform to manage aerodynamic loads and ensure accurate suspension geometry, enhancing both ride and handling performance. Powertrain and suspension components are mounted on lightweight aluminum front- and rear subframes that absorb energy loads in the event of a crash.

The double-walled carbon fiber rear crash structure that negates the need for an additional roll cage leaves a space behind the top of the seats that can accommodate two crash helmets and race suits. A section of the rear bulkhead, which is full-carbon as standard, can be specified with glass as a no cost option, offering a mesmerizing view into the engine bay from the cockpit.

The benefits of carbon fiber are felt throughout the McLaren Senna. The body panels, which have the immense structural rigidity needed to support the aerodynamic forces they are subjected to at high speeds on a race track, are incredibly strong and lightweight. Even at 150mph, under huge aero loads, the front splitter of the McLaren Senna deflects less than .4 inches. The carbon fiber rear wing is equally impressive: weighing just 10.7lbs, it can support more than 100 times its own weight in downforce. The roof-mounted 'snorkel' intake and the intake plenum atop the twin-turbo engine are both constructed in carbon fiber and serve to lower the center of gravity as well as reducing weight; the intake plenum weighs just 6.4lbs, almost half the weight of a McLaren 720S cast aluminum plenum.

Saving every gram to minimize weight

The drive of the team behind the McLaren Senna to minimize weight has been incredible. Having met their targets, engineers committed to a further five percent weight reduction, chasing every gram of possible savings – even individual bolts were scrutinized, with a change from a hex head flange to a button head flange on M6 bolts saving 33 percent. An individual rear fender panel, which incorporates an upper intake to cool the high-temperature radiator (HTR) and a lower intake to feed the brake duct, weighs a mere 6.3lbs, with a panel thickness of just .04 inches. A complete front

fender panel is 0.66kg. In total, the carbon fiber body panels of the McLaren Senna together weigh less than .03lbs.

Meticulous attention was paid to even minute details. A mechanical door release was changed to an electrical switch, reducing weight by 20 percent and packaging volume by 26 percent – yet retaining the same haptic feedback. The complete door release module and its harnesses weigh just 11.8oz, while all the controls are ergonomically designed to suit both gloved and un-gloved operation.

The determination to save weight led to advances in every area of the vehicle and also to single parts performing multiple functions: the McLaren Senna is the first McLaren to feature a lightweight composite front crash beam, which incorporates aerodynamic ducting in addition to being a crash structure; huge 'super wheel arches' – one of the first parts to be bolted to the rear frame – have the rear fenders, double diffuser and high-temperature radiators mounted on them. Even parts often taken for granted were re-evaluated and reassessed: befitting the nature and intention of the McLaren Senna, the license plate plinth can be specified with a quick-release option that attaches to the front of the car using lightweight magnets, reducing the number of fixings and needing no tools for removal at a race track.

McLaren's most powerful road-car internal combustion engine

"The McLaren Senna experience is simply stunning. We have never built an engine quite like this before. The power, torque and performance are mind-blowing and on throttle, with the intake above you and the air mixing in the carbon fiber plenum, it feels like the engine is right there alongside you in the cockpit."

Marcus Waite, Chief Engineer, McLaren Automotive

- McLaren's most powerful internal combustion engine to date produces 789bhp at 7,250rpm and 590lb ft from 5,500 to 6,700rpm - with 516lb ft from just 3,000rpm
- 4.0-litre (3,994cc) twin-turbo V8 features unique air intake and inlet manifold, bespoke camshafts and twin high-flow fuel pumps
- Complex Inconel and titanium exhaust exits through rear deck, dramatically enhancing aerodynamic performance and delivering thrilling soundtrack

The heart of the McLaren Senna is the most powerful road car internal combustion engine ever created by McLaren. The twin-turbocharged, V8, which is coded M840TR, produces 789bhp and 590lb ft, gains of 62bhp and 59lb ft over the internal combustion powertrain in the McLaren P1TM.

The engine breathes through a distinctive 'snorkel' air intake that stands proud of the roof into the free-stream airflow and feeds clean air directly into a bespoke carbon fiber plenum set atop the engine. The beautiful carbon fiber intake plenum – visible through a lightweight polycarbonate engine cover – saves weight in comparison to any metallic alternative and the curving, voluptuous design that meticulously controls airflow is also visually striking as one of the few organic shapes on the McLaren Senna. This ultra-efficient air pathway – part of an air inlet and manifold system unique to the McLaren Senna – creates a higher flow rate ahead of the turbochargers, the faster intake fill sharpening throttle response and increasing the sense of connection between the driver's right foot and the rear wheels.

The M840TR engine features a flat-plane crankshaft, race-inspired dry sump lubrication and lightweight connecting rods and pistons that reduce mass in the powertrain. Ultra-low inertia twinscroll turbochargers and electronically controlled wastegates give an immediate sense of retardation, enhancing engine responsiveness. Lightweight camshafts and pistons unique to the McLaren Senna and externally repositioned dump valves are among other Senna-specific components. Additionally, ion sensing with individual sensors per cylinder enables higher pressures and temperatures than on other McLaren engines.

Extensive dyno work has perfected the control strategies required to deliver the power and torque the McLaren Senna demands. The M840TR powertrain produces 516lb ft from just 3,000rpm, with peak torque of 590lb ft is available from 5,500-6,700rpm. Peak power of 789bhp is generated at 7,250rpm.

The engine requires two high-flow fuel pumps as a single fuel pump cannot meet the required fuel flow. A two-pump system is also more efficient, with one pump providing the majority of the fuel flow and the second pump 'topping up' the flow when demand is higher. This configuration uses less power than a single, larger pump running at high rpm and also less than both pumps running in parallel at equal rpm. The increased efficiency of each pump allows the McLaren Senna to use one less pump than the McLaren P1TM, leading to a reduction in weight.

The unique Inconel and titanium exhaust is another key element of the high-performance powertrain. Exiting through the ultra-low carbon fiber rear deck, the exhaust tips are angled so as

not to disrupt airflow around the rear wing and rear diffuser. The exhaust, which is tightly packaged and engineered to reduce weight, uses either a twin-exit or triple-exit active system depending on market requirements. The latter is standard-fit in EU market, the exhaust system concept having been refined to reduce the exhaust valves from 4 to 2 and enable a customer to have a quieter mode at lower engine speeds and a more engaging exhaust note at higher engine speeds and loads on tracks.

Intense emotional connection

The stunning sound of the powertrain is a match to both the track performance of the McLaren Senna and its incredible visual appearance. Whether you engage with the McLaren Senna through observing it in a pit lane, hear it drive hard through the gears or experience it in action on a race circuit, what you feel, see and hear will create the same level of highly intense, emotional connection.

McLaren engineers decided early in the program that the engine needed to feel like the center of the noise source, almost as if it were inside the cockpit. Reflecting the same honesty of the aero-led design and the pure connection with the driver, this has been achieved without using electronic sound enhancement; mechanical changes such as repositioning the dump valves externally of the turbochargers to reduce compressor noise have instead been key.

The result is a harmonious symphony of sound that is a mechanical, aural delight and quite stunning. The cockpit comes alive from the rush of air into the roof-mounted intake and its mixing in the carbon fiber plenum. These high-frequency sounds have been precisely tailored through tuning of the 'snorkel' intake and the carbon fiber plenum. The sounds from the Inconel and titanium exhaust are loud and sharp, singing like a motorcycle race engine in its ferocity and quite different to other McLarens. The intense crescendo encourages the driver to use high rpms, the volume increasing with 10dB for every 2,000rpm, climbing right through to the engine's rev limit.

The stiff engine mounts required on the McLaren Senna to meet dynamic performance standards are also the primary contributor to transferring and radiating the engine's low-frequency sounds into the cockpit. These excite the double-walled rear structure of the carbon fiber Monocage III, amplifying every rpm change inside the cockpit. Complementing this, McLaren's engineers have worked to ensure that the connections felt through the seat, throttle and steering column are all precisely aligned, building on lessons learned in developing previous models to excel on a race track.

A dual-clutch, seamless-shift, seven-speed gearbox delivers power from the mid-mounted engine to the rear wheels. The driver can have full manual control of the gear shifts via paddles mounted on a rocker behind the steering wheel. The elongated, lightweight carbon fiber paddles are optimized to be used both with or without racing gloves and create a deep sense of mechanical connection with the McLaren Senna. The fully manual gearchange is selected via a button on the Active Dynamics Panel located within the centrally mounted screen. A fully automatic mode is the default for the McLaren Senna, although the paddles can be used to change gear during this vehicle setting.

Adopted from Formula 1^{TM} and first developed for the McLaren 675LT, the use of Ignition Cut technology in Sport mode sees a momentary cut of the fuel spark during a gearshift for a faster change, accompanied by a dramatic aural 'crack' on both upshifts and downshifts that maximizes driver engagement. Optimal performance is achieved in Track and Race settings using the innovative Inertia Push technology, which harnesses the built-up kinetic energy to deliver an impulse of torque as the next forward gear is engaged, ensuring no there is no drop in momentum during acceleration.

McLaren's transmission and software strategy has a launch-control function that delivers truly breath-taking straight-line performance. Acceleration from 0-62mph is achieved in 2.8 seconds; 0124 mph in 6.8 seconds and 0-186mph in 18.8 seconds. The McLaren Senna can complete the standing guarter mile in 9.9 seconds and the maximum speed is 208 mph.

The character of the twin-turbo V8 and seven-speed gearbox can be tailored further via the Active Dynamics Panel, with the driver having a choice of Comfort, Sport or Track powertrain modes. These settings enable powertrain and chassis to be perfectly harmonized and matched to the driver's demands, whether they are heading to or from a race track, or on the circuit itself.

Innovative suspension delivers peerless performance

- RaceActive Chassis Control II (RCC II) combines hydraulic suspension with cutting-edge control theory to augment aerodynamics
- Race mode delivers uncompromised track performance, lowering the ride height by 1.5
 inches at the front and 1.2 inches at the rear to boost ground effect downforce and optimize
 aerodynamic performance through increased vehicle rake

 Next-generation carbon ceramic, motorsport-derived CCM-R brakes and bespoke Pirelli P ZERO™ Trofeo R tires, engineered and developed to deliver a more connected driving experience and quicker lap times

McLaren Automotive has pioneered the use of adjustable suspension technology in its road cars since the inception of the 12C, with its ground-breaking ProActive Chassis Control system. The introduction of the McLaren $P1^{TM}$ in 2012, with its revolutionary RaceActive Chassis Control, ushered in adjustable ride height and spring stiffness, the track-focused Race Mode producing ground effect aerodynamics that enabled astonishing cornering speeds. The second-generation Super Series, the McLaren 720S, pioneered ProActive Chassis Control II in 2017, utilizing a new control strategy that had its basis in advanced mathematical research initiated by McLaren at the University of Cambridge.

Now, all of McLaren's experience and knowledge comes together to create the next generation of cutting-edge, track-focused suspension, which makes its debut with the McLaren Senna: RaceActive Chassis Control II (RCC II). RCC II is based on a double-wishbone system, the upper front wishbones and rear wishbones forged in lightweight aluminum to further reduce unsprung mass. The lower front wishbones are fabricated in hollow steel to be both strong and light, and also guide cooling air into the radiators using lessons learnt on the McLaren P1TM.

McLaren's engineers paid particular attention to suspension geometry, to ensure maximum stability under heavy braking, high-speed cornering and intense acceleration. The compliance and kinematics specifically consider the incredible aerodynamic loads the suspension will be subjected to during extreme circuit driving in Race Mode.

The adaptive dampers of the RCC II system are interconnected hydraulically, both left to right and front to back, with two valves per damper to independently adjust for compression and rebound. The continuously variable system advances the control strategy introduced on the McLaren 720S to incorporate Race mode, which introduces significantly stiffer suspension, a lower ride height and a lower center of gravity.

Data from sensors – including four wheel accelerometers, two pressure sensors per damper, and multiple body sensors – is analyzed and reacted to in a mere 2 milliseconds to ensure perfect damping response. As soon as the driver moves the steering wheel, even before the car reacts the vehicle uses advanced algorithms to calculate the reaction and proactively regulate the damping to stabilize the vehicle. Crucially for the driver, the only sensation they feel is an instantaneous dynamic response to their inputs.

Rather than conventional mechanical springs and mechanical anti-roll bars – which compromise pitch, roll, heave and warp stiffness – the McLaren Senna features a hydraulic alternative with gas filled accumulators, linked side-to-side. During cornering, the hydraulic system provides a restoring force with increased axle stiffness, to minimize vehicle roll. With a further hydraulic link front-to back, fluid is transferred fore or aft under single wheel movements, creating a separation of the roll stiffness from the warp stiffness. This allows for a very high roll stiffness, but a low warp stiffness that wouldn't be possible mechanically. Low warp stiffness limits disturbances to the body, absorbing single wheel inputs like clipping a curb at high speed on a race track, while the high roll stiffness stabilizes the vehicle: it is a true 'no compromise' set-up.

Hydraulic suspension with variable ride height

The McLaren Senna goes to a further extreme, with a development of the variable ride height and variable spring stiffness system established on the McLaren $P1^{TM}$. Instead of stiff mechanical coil springs providing the heave and pitch stiffness under braking, acceleration and vertical movements, these have been replaced by a hydraulic circuit (K damper). Small, lightweight and comparatively soft springs remain, but only to provide a base level of control. Hydraulically connected across each axle with an accumulator, the system effectively acts as a third spring in the middle of each set of wheels. Under single wheel inputs, the accumulator is filled by hydraulic fluid only from one side, mitigating the effect of such a destabilizing input to the vehicle. During cornering, the accumulator is not filled, as the fluid flows across the axle with no effect on the roll stiffness.

When a load is applied to both wheels on the same axle, for instance via downforce or lateral acceleration or deceleration, fluid from both sides flows into the accumulator but meets a resistance, reducing heave and pitch. Under braking this stabilizes and pushes up the front axle, reducing dive. The opposite occurs at the rear with the effect of the accumulator pulling down on the axle, while under hard acceleration the system works in reverse to negate squat. These attributes can be engineered mechanically, but the hydraulic set-up offers two further, distinct advantages: variable ride height and variable spring stiffness. Select Race mode and the McLaren Senna lowers by 1.5 inches at the front and 1.2 inches at the rear, moving the front splitter as close to the ground as possible. This boosts ground-effect downforce and optimizes aerodynamic performance by increasing vehicle rake as a virtue of raising the comparative height of the rear diffuser.

At the same time, the stiffness of the hydraulic circuit increases. At low speeds in Race mode the stiffness is comparatively softer than the McLaren $P1^{TM}$, both for compliance and to increase mechanical grip and traction. As speed and aerodynamic load increases, so does the stiffness, preventing the car being pushed and 'sucked' to the ground in heave and pitch.

The top speed of the McLaren Senna is not limited in Race mode, but above 155mph the aero blades and rear wing are actively trimmed to preserve peak downforce levels, which would otherwise continue to increase with speed and impart excessive load on the suspension and tires.

The driver can adjust handling parameters using the Active Dynamics Panel located on the center console to access Comfort, Sport and Track modes; Race mode is selected via a button in the roof mounted panel. Through each of these modes the adaptive damping, roll control system and heave and pitch stiffness is adjusted, optimizing the handling balance and overall performance. If the driver chooses not to use the Active Dynamics Panel, RaceActive Chassis II defaults to a set-up to mirror Sport mode, with all the electronic safety systems remaining fully engaged and the gearbox utilizing the Comfort setting with an automatic mode.

The ride height is lowered only in Race mode, but in all chassis modes the hydraulic system provides a self-levelling function that compensates for passengers, luggage and fuel load. A vehicle lift system is fitted as standard to the McLaren Senna: operated by a stalk on the steering column, it allows the driver to raise the vehicle to clear obstacles such as sharp gradient changes on driveways.

The Electronic Stability Control (ESC) system functions separately from the individual modes, the 'ESC On, 'ESC Dynamic' and 'ESC Off' settings offering the driver full control over the level of vehicle intervention. Such is the transformation of the McLaren Senna in Race mode that even 'ESC On' allows for slightly more vehicle freedom as road legislation requirements are removed and the 'Dynamic' setting priorities fastest lap times.

McLaren Variable Drift Control (VDC) allows the driver to adjust the level of traction control assistance independent of the ESC and therefore the limit of oversteer. This adjustability allows a driver to hone their skills, over time moving from the stage where the car's systems are intervening regularly to a stage where they are not intervening. VDC is available when the ESC is set to 'ESC Dynamic' or 'ESC Off'; the Active Dynamics Panel must also be active or the vehicle in Race mode.

Complementing ESC and VDC is Brake Steer, a technology McLaren developed for Formula 1^{TM} that was ultimately banned from the sport due to the performance advantage it offered over rivals. This race-bred technology imperceptibly brakes the inside rear wheel to enhance turn-in and reduce understeer, encouraging the driver to apply the throttle earlier. This significantly enhances the agility of the McLaren Senna and removes the requirement for a traditional limited-slip differential, saving weight and reducing component complexity.

The chassis system of the McLaren Senna is complex and complicated, but it reacts with seamless, simple outputs that improve lap times and most importantly, provide the driver with the innate feel and clarity of response needed to deliver an incredible driving experience. These inherent priorities mean the steering of the McLaren Senna features power assisted, electro-hydraulic assistance, because McLaren's test drivers – and its customers – favor the detailed feedback and textured impressions it delivers. There is one steering software 'map' for all handling modes, but drivers will feel an intensifying level of response as the chassis stiffness increases through Comfort, Sport, Track and Race, with specific engineering adjustments ensuring the high aerodynamic loads do not corrupt the true steering sensations.

Bespoke Pirelli tires designed for track use

Due to its extreme performance, the McLaren Senna features bespoke tires developed in conjunction with technical partner Pirelli. The Pirelli P ZERO™ Trofeo R tires (245/35 ZR19 at the front, and 315/30 ZR20 at the rear) are designed for dry race tracks, but are approved for road use to enable the McLaren Senna to be driven to a circuit. The asymmetrical tread pattern provides outstanding lateral grip and the special construction maintains cornering stiffness. Specific development work was undertaken on the compound to shorten braking distances, improve longitudinal performance, create a consistent reaction between the front and rear axles and heighten on-center steering response. A Pirelli P ZERO™ tire is available as a no-cost option.

The single-minded approach to the McLaren Senna led the engineering team to create an Ultra Lightweight alloy wheel, with a race-inspired center lock system. In Gloss Black finish as standard, the wheel is optionally available in Satin Raw Metal and Dark Stealth finishes at no additional cost.

The braking system is the most advanced ever fitted to a McLaren road car, the next-generation carbon ceramic CCM-R brakes utilizing racing technology. Each disc measures 390mm x 34mm and takes seven months to create – seven times longer than a conventional carbon ceramic disc – with

cooling vanes machined into the disc, rather than molded. The discs have four times the thermal conductivity and are 60 percent stronger than conventional carbon ceramic discs. This allows the discs to be smaller, reducing unsprung mass, yet over a typical track cycle the temperature of most braking events is 150°C cooler despite the increased performance of the McLaren Senna. Brake fade and wear rates are also reduced. A reduction in temperature serves to further reduce weight (and improve packaging) as the brake ducts can be reduced in size and still meet cooling requirements.

Such has been the focus on extreme weight saving that the brake calipers do not feature the raised 'McLaren' logo recently showcased on the McLaren Super Series. The Formula 1^{TM} inspired front calipers are a super-stiff monobloc design to maintain pedal feel and feature six ventilated pistons to reduce temperatures. Brake pad materials are matched to the unique disc, while a brake booster developed for the track-only McLaren $P1^{\text{TM}}$ GTR, enhances modulation and pedal consistency.

The braking performance of the McLaren Senna is phenomenal: 124mph to standstill is achieved in just 328.1 feet, and less than 98.4s is covered stopping from 62mph.

Personalization and McLaren Special Operations

Deciding to purchase a McLaren was only the first of many decisions for each of the 500 buyers who secured one; they then need to choose the color, trim and specification of their car. There are five suggested 'By McLaren' specifications for the new McLaren Senna, selected by McLaren designers as those that best showcase the car. With exterior paint in a choice of Stealth Cosmos black; Trophy Kyanos blue; Trophy Mira orange; Vision Pure white and Vision Victory grey, each specification includes front aero blades, front fender inners, brake calipers, door gas struts and seat perforation in a contrasting color. A further 18 exterior paint colors can be specified at no additional cost, with 16 more paint options available from the MSO Defined palette offered by McLaren Special Operations. Beyond this, a virtually limitless spectrum of colors can be created through the MSO Bespoke service.

In addition to selecting the exterior color theme for their new McLaren Senna, customers can explore the different By McLaren Designer interior alternatives that complement the Jet Black leather or Carbon Black Alcantara® and visual carbon fiber cockpit materials. Color-coded aero blades and fender inners; an exhaust heatshield in Gloss Black, Satin Raw Metal or Dark Stealth finish; a carbon fiber or Alcantara® steering wheel and three finishes to the Ultra-Lightweight 9-Spoke forged alloy wheels are among the specification choices as standard.

Further personalization is available through McLaren Special Operations (MSO). Tailored possibilities include bespoke exterior paint colors for the body, wheels and center lock nuts and a 24-carat gold engine heat shield inspired by the McLaren F1. A full visual carbon fiber body that highlights the extensive lightweight engineering is available and can even be tinted with a bespoke color of the customer's choice. Interior possibilities include tinted carbon fiber and unique embossed or embroidered headrests; in fact, almost anything is possible through an MSO Bespoke Commission.

The McLaren Senna will make its public debut in March 2018 at the 88th Geneva International Motor Show. More information about the ultimate road-legal, track McLaren, together with images and films, can be found at http://cars.mclaren.com/ultimate-series/mclaren-senna.

* U.S. base MSRP does not include federal/state/local tax	es, license, titling, registration or transportation fees.
	,,

Ends

Technical specification

Body construction	Carbon fiber Monocage III central structure; aluminum front and rear frames; carbon fiber body panels
Drivetrain configuration	Longitudinal mid-engined; rear-wheel-drive
Active aerodynamic features	Active front aero blades; active rear wing
Maximum downforce generated	1,763lbs at 155mph
Engine configuration	M840TR engine, 4.0-liter twin-turbo V8, 3,994cc
Engine power bhp/kW	789/588 @ 7,250 rpm
Engine torque lbs ft	590 @ 5,500 - 6,700rpm
Transmission	7 Speed SSG (Seamless Shift Gearbox)
Powertrain modes	Comfort; Sport; Track
Suspension	McLaren RaceActive Chassis Control II (RCC II) system. Double wishbones front and rear; independent interconnected hydraulic dampers; K dampers
Handling modes	Comfort; Sport; Track; Race
Steering	Electro-hydraulic, power-assisted
Brakes	CCM- R carbon ceramic discs with machined cooling vanes (390mm x 34mm front and rear). Aluminum monobloc six piston front brake calipers; aluminum four-piston rear
Wheels (inches)	Ultra-lightweight, 9-spoke, center lock super-forged alloy. Front: 19 x 8J; Rear: 20 x 10J
Tires	Bespoke Pirelli P ZERO™ Trofeo R tires (P ZERO™ tires a no-cost option). Front: 245/35/R19; Rear: 315/30/R20

186.8
105
48.4
84.7
80.7
77.1
Front: 65.1; Rear: 63.7
42.3 feet
2,641
659bhp-per-ton
2,885.9lbs
2.7 seconds
2.8 seconds
6.8 seconds
18.8 seconds
9.9 seconds
208 mph
705.4 feet
328.1 feet
96.8 feet
12.41/100km/16mpg

^{*}All figures stated are McLaren engineering figures and subject to final verification

Notes to Editors:

A selection of high resolution images accompanying this release is available to download from the McLaren Automotive media site – <u>cars.mclaren.press</u>

About McLaren Automotive:

McLaren Automotive is a creator of luxury, high-performance sportscars and supercars.

The company, launched in 2010, is now the largest part of the McLaren Group.

Every vehicle is hand-assembled at the McLaren Production Centre (MPC) in Woking, Surrey, England.

The company has three defined product families: Sports Series, Super Series and Ultimate Series which are retailed through over 80 retailers in 30 markets around the world.

McLaren is a pioneer that continuously pushes the boundaries. In 1981, it introduced lightweight and strong carbon fiber chassis into Formula 1 with the McLaren MP4/1. Then in 1993 it designed and built the McLaren F1 road car - the company has not built a car without a carbon fiber chassis since. As part of the Ultimate Series, McLaren was the first to deliver a hybrid hypercar, the McLaren $P1^{TM}$.

Announced in 2016, the company's Track22 business plan will see the company invest £1billion in research and development to deliver 15 new cars or derivatives by the end of 2022, of which at least half will be hybrids.

2017 saw the company launch further models in line with Track22 including the second-generation Super Series, the 570S Spider and the McLaren Senna.

To support the development, engineering and manufacture of its range of innovative sportscars and supercars, McLaren Automotive partners with world leading companies to provide specialist expertise and technology. These include AkzoNobel, Kenwood, Pirelli and Richard Mille.

McLaren Group:

The McLaren Group is a global leader in luxury high performance and technology and comprises three principal businesses: Automotive, Racing and Applied Technologies.

Further information:

Roger Ormisher

Vice President, Communications & PR | McLaren North America

Phone: +17145018137

Email: roger.ormisher@mclaren.com

Laura Tilley

Public Relations Manager | McLaren North America

Phone: +17655172186

Email: <u>laura.tilley@mclaren.com</u>

Media website: cars.mclaren.press

Facebook: www.facebook.com/mclarenautomotive

Twitter: www.twitter.com/McLarenAuto

You Tube: <u>www.youtube.com/mclarenautomotivetv</u>

